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Large scales density field

+
Cosmological principle: The Universe on large scales is homogenous and isotropic 

Baryonic acoustic oscillation:   
excess of clustering at the sound horizon scale
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Statistical description: 
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For an Isotropic and homogenous field 
the correlation function is a function of 
|r1-r2| and not of their orientation

Real-space
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Figure 4. The LasDamas galaxy correlation function, averaged over the 160 simulations, as a function of the separation perpendicular
(?) and parallel (||) to the line of sight. The correlation functions have been scaled by r2 to highlight the BAO feature. The top panels
show the unreconstructed correlation functions, while the bottom panels show the reconstructed correlation functions; the left and right
panels are real and redshift space respectively. The BAO feature is visible as a ring at ⇠110Mpc/h in the top left panel. Redshift space
distortions destroy the isotropy of the correlation function (top right). Reconstruction both sharpens the BAO feature (highlighted in
the bottom left panel) and restores the isotropy (bottom right) of the correlation function on the BAO scale.

Figure 5. [left]The angle averaged correlation function in real space, before [red circles] and after [blue squares] reconstruction and
averaging over the 160 LasDamas simulations. The reconstruction algorithm assumes the default parameters described in the text.
The acoustic feature is clearly sharpened after reconstruction. [right] Same as the left panel, except in redshift space. Also shown
for comparison is the average reconstructed real-space correlation [dashed line]. In addition to sharpening the acoustic feature, the
reconstruction algorithm also reduces the e↵ects of redshift-space distortions on the correlation function.
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averaging over the 160 LasDamas simulations. The reconstruction algorithm assumes the default parameters described in the text.
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Non-linear RSD Linear RSD

Reconstruction of the velocity and density fields to remove RSD

(Padmanabhan et al. 2012)
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The Least Action Principle (Peebles 1989)

 Idea: Reconstruction of particles trajectories backward in time 
            by minimisation of the action


• “mixed boundary condition problem”:

 observed positions/redshifts & initial velocities


• Point-like particles, with equal mass, 

• interacting only by gravity in a FLRW Universe +                   

Newtonian approximation

Context Reconstruction techniques Perturbative reconstruction Reconstruction by LAP eFAM Conclusions & perspectives

Reconstruction by Least Action Principle
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Idea: Reconstruction of particles’ trajectories backward-in-time
by minimization of the action:

“mixed boundary conditions”: final positions & initial velocities
point-like particles interacting only by gravity in a FLRW Universe in
Newtonian approximation.

Action (Peebles 1989)
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2ẋ2i �mi

h

�G
a

1

2

PN
j=0,j 6=i

mj

|xi�xj | �
2

3

G⇡⇢ma2x2i

io

Trajectories’ parametrization: xi (t) = xi0 +
P

n Ci,nqn(t) (ZA: n = 1)

with qn(t0) = 0 and lim
t!0

D(t)2qn(D(t))ẋi (t) = 0
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of the equations of motion deduced from a stationary action,
�S = 0, subject to mixed boundary conditions as in FAM.

Di↵erently from the original FAM algorithm that used
a tree-code to calculate the gravitational force-field, eFAM
makes use of GyrfalcON (Dehnen 2002), a very e�cient
Poisson solver that optimally combines a tree-code and the
fast multipole method (FMM). The FMM implements an
improved multipole-acceptance criterion for the splitting or
execution of the cell-cell interaction, and a symmetric cal-
culation of the cell-cell interactions that conserves the to-
tal momentum. The computational complexity is finally re-
duced to O(N ).

2.2 Orbits parametrisation in generic cosmology

As in FAM, applying the Rayleigh-Ritz method common in
quantum mechanics the trajectories {xi (D)}i in real-space
are described by a linear combination of M time-dependent
basis functions {qn (D)}n with unknown coe�cients Ci,n, viz.
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in which the dependence on D is omitted for clarity for all
but the basis functions and their derivatives. Denoting ✓i ⌘
dxi/dD = vi/ f DH the rescaled peculiar velocity of the i-th
particle and
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its peculiar acceleration, the stationary variations of the ac-
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With the boundary conditions (4), these N ⇥ M equations
correspond to the Euler-Lagrange equations obtained from
�S(x

1

, . . . , xN , ✓
1

, . . . , ✓N ) = 0. This assures that the minimi-
sation of the action with respect to the coe�cients Ci,n is
equivalent to the minimisation with respect to the whole
trajectories.

2.3 Redshift-space

In redshift-space we introduce the comoving redshift coor-
dinates of the i-th object as
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where the subscript
0

denotes the quantities at present time,

the subscript
obs

at the their observed location, and ✓ ki the
component of the peculiar velocity along the line-of-sight.

The variation �si,obs

contains an extra term with respect
to the real-space parametrisation, �xi,obs

= 0. The additional

term �✓ k
i,obs

brakes the isotropy of the �si,0 introducing a

preferential direction along the line-of-sight; a Cartesian de-
composition of the orbits coe�cients Ci,n is therefore not
convenient anymore. Instead, the coe�cients Ci,n can be
split into two components perpendicular and parallel to the
line-of-sight. Following Schmoldt & Saha (1998), a Cartesian
coordinate system is assigned to each object and a rotation
is applied object-by-object to align one of the axes to the
line-of-sight, the common origin of the galaxies’ frames be-
ing the observer’s position. In this way, the correction for
the RSD is confined to one single axis, parallel to the radial
velocity. Note that although the objects move, their coordi-
nate frames do not. The new parametrisation of trajectories
parallel and perpendicular to the line-of-sight finally read
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which di↵er from the time-averaged equations of motion by
a boundary term. This can be eliminated by adding to the
action a kinetic energy term corresponding to a degree of
freedom parallel to the line-of-sight; the resulting action in
redshift-space to be minimised is
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2.4 Minimisation procedure and first-guess

The very hard minimisation problem in 3N ⇥M dimensions,
which can be as large as 10

7 for several hundred-thousands
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˙D✓i (D) = 0 are

qn (D
obs

) = 0 , lim

D!0

a f HDpn (D) = 0 , (4)

in which the dependence on D is omitted for clarity for all
but the basis functions and their derivatives. Denoting ✓i ⌘
dxi/dD = vi/ f DH the rescaled peculiar velocity of the i-th
particle and

gi ⌘ �
1

n̄
obs

a3

obs

1

2

NX

j,i, j=1

xi � xj

|xi � xj |3
+

4

3

xi (5)

its peculiar acceleration, the stationary variations of the ac-
tion with respect to Ci,n give

0 =
@S
@Ci,n

=

Z D
obs

0

dD w✓ipn +
Z D

obs

0

dD
3⌦m,0

8⇡ f EDa
giqn

=
⇥
w✓iqn

⇤D
obs

0

�
Z D

obs

0

dD
"

d(w✓i )
dD

� 3⌦
m0

8⇡ f EDa
gi

#
qn .(6)

With the boundary conditions (4), these N ⇥ M equations
correspond to the Euler-Lagrange equations obtained from
�S(x

1

, . . . , xN , ✓
1

, . . . , ✓N ) = 0. This assures that the minimi-
sation of the action with respect to the coe�cients Ci,n is
equivalent to the minimisation with respect to the whole
trajectories.

2.3 Redshift-space

In redshift-space we introduce the comoving redshift coor-
dinates of the i-th object as

si,0 =
H

0

a
0

c
xi,obs

+
a

0

( f DH)
obs

c
✓ k
i,obs

, (7)

where the subscript
0

denotes the quantities at present time,

the subscript
obs

at the their observed location, and ✓ ki the
component of the peculiar velocity along the line-of-sight.

The variation �si,obs

contains an extra term with respect
to the real-space parametrisation, �xi,obs

= 0. The additional

term �✓ k
i,obs

brakes the isotropy of the �si,0 introducing a

preferential direction along the line-of-sight; a Cartesian de-
composition of the orbits coe�cients Ci,n is therefore not
convenient anymore. Instead, the coe�cients Ci,n can be
split into two components perpendicular and parallel to the
line-of-sight. Following Schmoldt & Saha (1998), a Cartesian
coordinate system is assigned to each object and a rotation
is applied object-by-object to align one of the axes to the
line-of-sight, the common origin of the galaxies’ frames be-
ing the observer’s position. In this way, the correction for
the RSD is confined to one single axis, parallel to the radial
velocity. Note that although the objects move, their coordi-
nate frames do not. The new parametrisation of trajectories
parallel and perpendicular to the line-of-sight finally read

x

k
i (D) =

csi,0

H
0

a
0

� ( f DE)
obs

✓ k
obs

+

MX

n=0

C

k
i,nqn (D)

=
csi,0

H
0

a
0

+

MX

n=0

Ci,nQn (D) (8)

x

?
i (D) =

MX

n=0

C

?
i,nqn (D) (9)

where Qn (D) ⌘ qn (D) � ( f DE)
obs

pn,obs

.
The boundary conditions deduced from �si,obs

= 0 give

Qn (D
obs

) = �( f DE)
obs

pn (D
obs

) (n = 1, . . . ,M) (10)

for the final, observed positions of the objects, and the same
expression as in (4) for the initial peculiar velocities. The
variation of the action with respect to the C

?
i,n coe�cients

subject to the new boundary conditions yields the same
equations as in real-space. Instead, the variation with re-

spect to the C

k
i,n’s gives the equations

⇣
w✓ ki Qn

⌘
obs

�
Z D

obs

0

dD
"

d(w✓ k )
dD

� 3⌦
m0

8⇡ f EDa
g

k
i

#
Qn = 0, (11)

which di↵er from the time-averaged equations of motion by
a boundary term. This can be eliminated by adding to the
action a kinetic energy term corresponding to a degree of
freedom parallel to the line-of-sight; the resulting action in
redshift-space to be minimised is

S = S +
1

2

�
w f DE

�
obs

⇣
✓ k
i,obs

⌘
2

. (12)

2.4 Minimisation procedure and first-guess

The very hard minimisation problem in 3N ⇥M dimensions,
which can be as large as 10

7 for several hundred-thousands

MNRAS 000, 1–13 (2018)
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Slope Bulk flow (km/s) RMS of residuals (km/s)

Vx  0.845 +/- 0.006  -21 +/- 1 78
Vy 0.920 +/- 0.005 8 +/- 2 81

Vz 0.981 +/- 0.006 63 +/- 1 91

eFAM accurately recovers the velocity field!
With no need of any smoothing

VeFAM vs. VNbody

Elena Sarpa   Northern Skies Cosmic Flows workshop ,  18-9-‘18!12
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z = 0 Mhalo > 1012 Msun ~ 100 DM part Lbox = 21 Gpc h-1 Cosmology: LCDM, WMAP7

LCDM, WMAP5

Simulation: DEUS-FUR

Mocks: sub-cubes*
Cutting the Parent simulation into 512 Sub-cubes of Lsub = 2 Gpc h-1 (Nhalos ~ 23k)


Separated by a 0.5 Gpc h-1 (Norberg et al. 2008) 

* Non-linear numerical 
action method 
instead of Lagrangian 
perturbative à la 
Padmanabhan

Elena Sarpa   EUCLID meeting,  14-6-‘18

* Pure N-body sim. 
     = COLA Mocks 
     generated using 2LPT

BAO reconstruction
Probing Non-linear dynamics
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Recovering the monopole
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Figure 9. Rescaled two-point correlation function in redshift-space, averaged over the 512 mocks, as function of the transverse (s?) and
line-of-sight (sk) separation. Left panel: Before reconstruction, from objects at z = 0; the isotropy of the acoustic feature, which should
be visible as a ring in the (sk , s?) plane, is broken by RSD. Middle panel: Correlation function after correcting the density field for the
RSD, again at the observed redshift z = 0; the isotropy of the acoustic feature is almost completely restored. Right panel: Correlation
function after reconstruction at z = 33.6; the BAO feature is sharper and symmetric, indicating the quality of the reconstruction.
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MNRAS, 396, 19
Ntelis P., et al., 2017, J. Cosmology Astropart. Phys., 6, 019
Nusser A., Branchini E., 2000, MNRAS, 313, 587
Nusser A., Dekel A., Bertschinger E., Blumenthal G. R., 1991,

ApJ, 379, 6
Padmanabhan N., White M., Cohn J. D., 2009, Phys. Rev. D, 79,

063523
Padmanabhan N., Xu X., Eisenstein D. J., Scalzo R., Cuesta

A. J., Mehta K. T., Kazin E., 2012, MNRAS, 427, 2132
Peebles P. J. E., 1989, ApJ, 344, L53
Peebles P. J. E., 1994, ApJ, 429, 43
Peebles P. J. E., 1995, ApJ, 449, 52
Peebles P. J. E., Yu J. T., 1970, ApJ, 162, 815
Planck Collaboration et al., 2018, preprint, (arXiv:1807.06209)
Rasera Y., Corasaniti P.-S., Alimi J.-M., Bouillot V., Reverdy V.,

Balmès I., 2014, MNRAS, 440, 1420
Romano-Dı́az E., Branchini E., van de Weygaert R., 2005, A&A,

440, 425
Ross A. J., et al., 2014, MNRAS, 437, 1109
Schmoldt I. M., Saha P., 1998, AJ, 115, 2231
Scoccimarro R., Sheth R. K., 2002, MNRAS, 329, 629
Seo H.-J., Eisenstein D. J., 2003, ApJ, 598, 720
Shaya E. J., Peebles P. J. E., Tully R. B., 1995, ApJ, 454, 15
Silk J., 1968, ApJ, 151, 459
Spergel D. N., et al., 2007, ApJS, 170, 377
Sunyaev R. A., Zeldovich Y. B., 1970, Ap&SS, 7, 3
Takada M., et al., 2014, PASJ, 66, R1
Tassev S., Zaldarriaga M., 2012, J. Cosmology Astropart. Phys.,

10, 006
Tassev S., Zaldarriaga M., Eisenstein D. J., 2013, J. Cosmology

Astropart. Phys., 6, 036
Tojeiro R., et al., 2014, MNRAS, 440, 2222
Wang H., Mo H. J., Yang X., van den Bosch F. C., 2013, ApJ,

772, 63

White M., 2005, Astroparticle Physics, 24, 334
White M., 2014, MNRAS, 439, 3630
Xu X., Padmanabhan N., Eisenstein D. J., Mehta K. T., Cuesta

A. J., 2012, MNRAS, 427, 2146
de Jong R. S., et al., 2016, in Ground-based and Air-

borne Instrumentation for Astronomy VI. p. 99081O,
doi:10.1117/12.2232832

APPENDIX A: BASIS FUNCTIONS AND
JACOBI POLYNOMIALS

The Jacobi polynomials p(↵,�)
n (x), defined for n = 0, 1, ... and

↵, � > 1, satisfy the orthogonality condition
Z

1

�1

dx(1 � x)↵ (1 + x)�p(↵,�)
n (x)p(↵,�)

m (x) = hn�nm (A1)

that can be determined using the recurrence relation

p(↵,�)
n+1

(x) = (Anx + Bn)p(↵,�)
n (x) � Cnp(↵,�)

n�1

(x). (A2)

For the expression of the coe�cients hn, An, Bn, and Cn, see
Abramowitz & Stegun (1970).

Defining x ⌘ 2(D/D
obs

) � 1, the weight function w̃(x) ⌘
A(1 � x)↵ (1 + x)� = A(2D/D

obs

� 2)↵ (2D/D
obs

)� that de-
fines the orthogonality condition (A1) is used as model for
w(D) ⌘ f (D)E(D)Da2(D) in the interval D 2 [0, D

obs

]. The
best-fit values for A, ↵, and � depend on the specific back-
ground cosmology; for a standard cold-dark-matter (SCDM)
model (↵, �) = (0, 3/2), while for the WMAP-7 ⇤CDM model
(↵, �) ⇡ (0, 1.53).

Once the values of ↵ and � are fixed, the functions q(↵,�)
n

for n � 1 are given by

q(↵,�)
n (D) =

Z D
obs

0

dD p(↵,�)
n (D) =

D
obs

n + ↵ + �
p(↵�1,��1)
n+1

+const,

(A3)

where the relation

dp(↵,�)
n

dx
=

1

2

(n + ↵ + � + 1)p(↵+1,�+1)
n�1

(A4)

has been used. The asymptotic limit of the Jacobi polynomi-
als for x ! �1, i.e. D ! 0, guarantees the vanishing of the

MNRAS 000, 1–13 (2018)

Pre-rec Post-rec, z=0 Post-rec, z=33.6

!14

๏  Broadening: Non-linear RSD

๏  Squashing: linear RSD

๏  No clear BAO ring

๏  Reduced broadening 
๏  ~ No squashing 
๏  Dumped BAO feature

๏  ~ No broadening 
๏  No Squashing 
๏  Clear BAO ring

(Sarpa et al. 2018, in prep.)
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Recovering the monopole

eFAM run

• Radius of sampled sphere: r
ext

= 990 Mpc h �1

• Number of halos per mock: N
halos

⇠ 56000

• Computing time per mock: cputime =  3h

2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

1

• Estimator: Landy and Szalay, i.e. ⇠(r) = DD(r)+RR(r)�2DR(r)
RR(r)

• Sample: Sphere of r
Sph

= 700 Mpc h�1

• Number of halos: N
halos

⇠ 23 000

• Number of random particles: N
random

= 50 x N
halos

• Sampled range: 30 Mpc h�1 < r < 200 Mpc h�1

• Number of bins: 17

Modelling of the 2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

• Power spectrum calculator: CAMB

• Minimization method: MCMC

• Model: P (k) = [P
lin

(k) � P
smooth

(k)]e�k

2⌃2
nl/2 + P

smooth

(k)

• Fitting Formula: ⇠(r) = b2⇠model(↵r) + A0 + A1
r

+ A2
r

2

• Fitting Parameters: ⌃
nl

, ↵, b�8, A0, A1, A2

• Priors: uniform

1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html

2

Post-reconstruction

z=0

Post-reconstruction

z=33.6

Linear theory

Pre reconstruction

Pre Rec Post Rec z=0 Post Rec z=33.6
1.007 1.005 0.997

0.002 0.002 0.001

(11.8 + 0.3) Mpch-1 (11.0 + 0.3) Mpch-1 (4.0 + 0.5) Mpch-1

eFAM run

• Radius of sampled sphere: r
ext

= 990 Mpc h �1

• Number of halos per mock: N
halos

⇠ 56000

• Computing time per mock: cputime =  3h

2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

1

• Estimator: Landy and Szalay, i.e. ⇠(r) = DD(r)+RR(r)�2DR(r)
RR(r)

• Sample: Sphere of r
Sph

= 700 Mpc h�1

• Number of halos: N
halos

⇠ 23 000

• Number of random particles: N
random

= 50 x N
halos

• Sampled range: 30 Mpc h�1 < r < 200 Mpc h�1

• Number of bins: 17

Modelling of the 2pt correlation function

• Code: Cosmo Bologna Lib by Federico Marulli

• Power spectrum calculator: CAMB

• Minimization method: MCMC
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nl

, ↵, b�8, A0, A1, A2

• Priors: uniform

1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
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(k)]e�k

2⌃2
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• Fitting Formula: ⇠(r) = b2⇠model(↵r) + A0 + A1
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+ A2
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• Fitting Parameters: ⌃
nl

, ↵, b�8, A0, A1, A2
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1
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
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Figure 6. The distribution of all 600 mock correlation functions,
both pre- (blue) and post-reconstruction (red). The data points
show the 6dFGS correlation function with errors from the diago-
nal of the constructed COLA mock covariance matrix. The post-
reconstruction data points have been displaced by +1h�1

Mpc for
clarity.

5.3 Post-Reconstruction

We apply density field reconstruction to both the data and
COLA mock catalogues. In doing so a galaxy bias of b = 1.82

(Beutler et al. 2011) and a growth rate of f (z
e�

= 0.097) =
0.579 were assumed. Our results are independent of this
choice as shown later in Section 6.3. When calculating the
displacement field, the overdensity field was smoothed us-

ing a Gaussian smoothing kernel, S(k) = e�(kR)
2/2, with the

smoothing scale of R = 15 h�1

Mpc. Using the calculated
displacement field as a proxy for the non-linear evolution,
the catalogues were shifted to move the field back into the
psuedo-linear regime. The reconstruction algorithm gave a
mean galaxy shift of s̄ = 5.87 h�1

Mpc.
The correlation function post-reconstruction has an es-

timator that includes both a shifted random S and indepen-
dent unshifted random catalogues R (Padmanabhan et al.
2012),

⇠(s) = SS(s)
RR(s)

✓
nr
ns

◆
2

+
DD(s)
RR(s)

✓
nr
nd

◆
2

� 2

DS(s)
RR(s)

 
n2

r

ndns

!
. (18)

As in the pre-reconstruction case, we use the smoothing
parameter fit from the mean of the mocks with a prior ⌃nl =
4.8 ± 2.0h�1

Mpc. The marginalised constraint on the shift
parameter ↵ post-reconstruction is ↵ = 0.895 ± 0.042(±0.235

0.079

)
with �2/⌫ = 9.49/11 = 0.86 (the error in the bracket show-
ing the non-Gaussianity at the 98% confidence level). The
model, data and �2 distribution are displayed in Figure 7.
The ↵ post-reconstruction found has a non-Gaussian likeli-
hood beyond the 1� region which means that although the
value is displaced from the average, it is still consistent with
the mock catalogues (discussed further in Section 6).

6 TESTS ON THE MOCK CATALOGUES

6.1 Fitting the mean of the mocks

We fit both the pre/post reconstruction average correla-
tion functions from the mock population. This fit makes
use of the covariance matrices, which have been rescaled
by the number of realisations N, C

mean

= C
one

/N. The best
fit model is shown in Figure 8 with ↵

pre

= 0.999 ± 0.0065

and ↵
post

= 0.997 ± 0.0035 giving an improvement factor of
I = �↵,pre

/�↵,post

⇠ 1.86.

6.2 Comparison between data and fits to
individual mocks

To make comparisons between the mock population and the
data, each of the 600 realisations used to produce the co-
variance matrices were individually fit. ⇠ 30% of the mock
catalogues in the population did not have a well constrained
measurement of ↵, a similar fraction to that found for the
SDSS MGS analysis (Ross et al. 2015). To ensure that this
comparison was performed only on the mocks that have a
relevant detection of the BAO feature, we select a subsam-
ple having 1� contours (��2 = 1) within the prior region
0.7 < ↵ < 1.3 (both pre- and post-reconstruction). This cut
reduces the population to 70% of its original number. Com-
parisons of the distributions of best-fitting �2, the value of ↵
pre/post-reconstruction and �↵ the 1� error bound (Fig. 9)
show that the data realisation is within the locus of mea-
surements from this subsample of the mocks.

The distribution of errors on ↵, shows that for our
mocks we see 80% of these mocks have �↵,pre

/�↵,post

> 1,
as would be expected after applying density field recon-
struction. Our detection in the data of the BAO peak us-
ing our model, which marginalises over broadband shape,
is at the ⇠ 1.9� level pre-reconstruction and ⇠ 1.75�
post-reconstruction. In the subsample of the mocks pre-
reconstruction 18% have a detection higher than this and
post-reconstruction this increases to 52%. The mean detec-
tion level pre/post-reconstruction for the mocks is 1.5� and
1.8� respectively. This increase in the number of high signifi-
cance detections in the mocks shows the expected trend from
density field reconstruction to, on average, enhance the sig-
nificance of detection. The lower left plot in Figure 9 shows
however that in 28% of cases, in the mock sample, recon-
struction lowers the significance of detection. The reduction
of significance seen in the data realisation is therefore likely
a case of the data being one of these “unlucky” samples.
When comparing the pre-reconstruction significance detec-
tion to Beutler et al. (2011) we find a lower value, this is due
to a number of conservative alterations. These include (1)
a change in the fitting model to include polynomial terms
that marginalise over the shape giving more freedom, (2) a
change of fitting range from 10 h�1

Mpc < s < 200 h�1

Mpc

to 30 h�1

Mpc < s < 200 h�1

Mpc and (3) the new robust co-
variance matrix made from the COLA-based mocks rather
than log-normal realisations (but which has slightly larger
covariance amplitude).
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Figure 3. Similar to Figure 1, but with reconstruction by the
Zel’dovich approximation as provided by the eFAM first-guess
(M = 1). The very large errors indicate the non-reliability of this
method, which moreover returns a biased estimation of the acous-
tic scale toward larger values.

Table 1. Fit results to the average correlation function before and
after reconstruction in real-space by eFAM (with M = 10 basis
functions) and using the Zel’dovich approximation (ZA, M = 1).
The parameters not shown are marginalised over.

Method Redshift ↵ �↵ ⌃
NL

(h�1

Mpc)

pre-recon z = 0 1.007 0.002 9.0 ± 0.2

eFAM (M=10) z = 2.7 0.999 0.001 3.5 ± 0.4
z = 6.5 1.000 0.001 1.2 ± 0.7

ZA (M=1) z = 2.7 0.996 0.003 3.8 ± 1.2
z = 6.5 0.980 0.010 2.0 ± 2.1

lation ↵ and its error, we performed the same analysis as in
Padmanabhan et al. (2012): the two-point correlation func-
tion is fitted for every mock, using flat priors for all the
parameters but ⌃

NL

, for which a Gaussian prior centered on
the best-fit obtained for the average ¯⇠ (r) and with the same

variance. The point-wise comparison between the fitted val-
ues of ↵ pre- and post-reconstruction on the 512 mocks, as
illustrated in the left panel of Figure 4, shows that the non-
linear eFAM method improves the measurement of the BAO
scale reducing the standard deviation of the probability dis-
tribution function of ↵, without introducing any statistical
bias. The improvement of the precision on ↵ (right panel)
is significant, the eFAM algorithm yielding �↵,rec

< �↵,unrec

for the 69 percent of mocks.

4.3 Recovering the BAO signal for unlucky
samples

The fittings of the correlation function pre-reconstruction
prove that the BAO scale is badly constrained for some sam-
ple. Two categories can be identified: the mocks returning
a wrong best-fit ↵

unrec

typically deviating from the actual
value ↵ = 1 more than �↵ (dubbed type-I samples), with
a corresponding �2(↵) with a minimum significantly shifted
from the true value; and the mocks without a clear acous-
tic feature (type-II samples), often yielding a �2(↵) with no
well-pronounced minimum. The eFAM method is remark-
ably able to retrieve the BAO signal from these samples.

For illustrative purpose, two representative examples
of type-I unlucky sample are shown in Figure 5. The cor-
rect relocation of the BAO peak in the two-point correlation
function from its incorrect position pre-reconstruction (left
column) to the right position around ⇠ 110h�1Mpc post-
reconstruction (central column) is encoded in the value of
the best-fit ↵, which is finally compatible with its true value
with an error that typically decreases post-reconstruction.
The �2 curve (right column) quantifies the de-biasing e↵ect
of the reconstruction. Analogously for type-II unlucky sam-
ples, three typical examples are shown in Figure 6. Here the
eFAM algorithm displays its remarkable ability to signifi-
cantly increase the signal around the BAO peak, returned
to its theoretical position with much higher statistical sig-
nificance and robustness; the rising of the peak matches the
decrease of the minimum in the �2, which was either not
present or not unique before the reconstruction.
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Figure 6. Fit results from the fiducial model for the type-II anomalous samples. Left column: Monopole of the two-point correlation
function before reconstruction; the acoustic peak is not visible. Middle column: Correlation function after reconstruction; the peak is
now clearly visible and the fit returns an unbiased value of ↵. Right column: ��2 (↵) = �2 (↵) � �2

min

before reconstruction (blue-dashed
line) and after reconstruction (red line); the minimum of �2 (↵) curve that pre-reconstruction was either unclear or not unique becomes
well-defined post-reconstruction.

Table 3. Fit results to average mock correlation functions in
redshift-space using eFAM

10

.

Type ↵ ⌃
NL

(h�1

Mpc)

pre-recon, z = 0 1.007 ± 0.002 11.8 ± 0.3
post-recon, z = 0 1.005 ± 0.002 11.0 ± 0.3
post-recon, z = 36.6 0.997 ± 0.001 4.0 ± 0.5

ishing quadrupole of the correlation function after recon-
struction; see Figure 10, bottom panel. To ease the com-
parison at di↵erent redshifts pre- and post-reconstruction,
the rescaled quadrupole of the two-point correlation func-

tion is shown, ˜⇠
2

(s) = 5[BD(z)]�2

R
1

0

L
2

(µ)⇠ (s, µ)dµ, with µ
the cosine of the angle between the separation vector and
the line-of-sight and L

2

the Legendre polynomial of order
2. Before reconstruction, the RSD brake the isotropy of the
correlation function returning a non-zero value for ˜⇠

2

. The

deviation from the isotropy is almost completely restored
after correcting for the peculiar velocities at the observed
redshift z = 0 and is further improved at small scales when
the density field is reconstructed at higher redshift, z = 36.6.

As done for the real-space analysis, the impact of the
reconstruction on the dilation parameter and its error is es-
timated by a point-wise comparison between the fitted val-
ues of ↵ pre- and post-reconstruction from the 512 mocks;
see Figure 11. The distribution of ↵

rec

is more centred on
the actual value, though its dispersions is only mildly im-
proved. The improvement of the precision of ↵ is less sig-
nificant in redshift-space, here the eFAM algorithm yielding
�↵,rec

< �↵,unrec

for the 61 percent of mocks.

5 CONCLUSIONS

An extended version of the Fast Action Minimization
method (Nusser & Branchini 2000), dubbed eFAM, is pre-

MNRAS 000, 1–13 (2018)
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Figure 5. Fit results from the fiducial model for two type-I anomalous samples. Left column: Monopole of the two-point correlation
function before reconstruction; the acoustic peak is shifted towards small scales. Middle column: Correlation function after reconstruction;
the peak location is now compatible the expected value within one standard deviation �↵ . Right column: ��2 (↵) = �2 (↵) � �2

min

before
reconstruction (blue-dashed line) and after reconstruction (red line); the shift of the best-fit ↵ towards the expected value ↵ = 1 reflects
the the shift of the peak in the correlation function.

plitudes of peculiar velocities. Accordingly, smaller peculiar
velocities allow a reconstruction pushed at earlier time, from
z ⇠ 7 in real-space to z ⇠ 40 in redshift-space using eFAM

10

.
As second test, we compared the monopole of the two-

point correlation function computed from the haloes with
known velocities, with the one obtained using the output
of the reconstruction; see top panel of Figure 8. At small
separation the strong two-point correlation between the ve-
locities of particles increases the amplitude of the correlation
function in redshift-space, ⇠ (s). This e↵ect is artificially mag-
nified when eFAM velocities are considered. However, this
e↵ect decreases with increasing relative separation when the
velocities of the pairs become less correlated, asymptotically
tending to zero at large scales; see bottom panel of Figure 8.
We therefore expect to obtain unbiased correlation functions
at the BAO scale, which supports the robustness of our pro-
cedure.

4.5 Monopole, quadrupole, and anisotropic
correlation function in redshift-space

The attractive feature of the eFAM technique is to recover
the peculiar velocities of objects at their observed redshift,
allowing for a non-parametric modeling of the RSD. This
is illustrated in Figure 9, which shows the density plots
of the rescaled anisotropic two-point correlation function
s2

¯⇠ (s k, s?) as function of the longitudinal (s k) and trans-
verse (s?) components of the separation vector s, averaged
over the 512 mocks. If the reconstruction is successful, s
represents the cosmological redshift with no peculiar veloc-
ity component in it. Before reconstruction (left panel), the

isotropy of the correlation function is broken by the RSD,
which compresses the BAO ring at ⇠ 110h�1Mpc along the
line-of-sight and split it into two arcs. This deformation is
almost completely removed after correcting the density field
in redshift-space by subtracting the longitudinal displace-
ment due to the peculiar velocities, as estimated by eFAM
at the same redshift of objects (middle panel). The BAO
ring is further sharpened by reconstructing the density field
at higher redshift (right panel).

The power of the eFAM technique to improve the mea-
surements of the acoustic scale enhancing the BAO signature
becomes glaring looking at the monopole of the correlation
function, ˜⇠ (s) after the non-linear evolution is maximally re-
versed; see Figure 10 top panel. This can be achieved with
eFAM at order M = 10, reaching z = 36.6 (red line) when the
monopole substantially matches the linear model (dashed
line). If only the monopole is considered, the eFAM success
to correct for RSD at z = 0 results limited (green line), only
slightly improving the measurement of the acoustic scale,
moderately sharpening and shifting the BAO peak towards
the expected value. The results of the model fitting listed
in table 3 show that this reconstruction does not bias the
measurements of the acoustic scale and reduces the value of
the non-linear broadening ⌃

NL

by 66 percent. The e�ciency
of reconstruction in the redshift-space, smaller than in real-
space case, could be the result of the lack of precision in the
assignment of the initial comoving redshift coordinates, as
described in subsection 3.1

Although not fully recovering the clustering signal at
the BAO scale at z = 0, eFAM e�ciently restores statisti-
cal isotropy already at this redshift, as shown by the van-

MNRAS 000, 1–13 (2018)

Shifted BAO peak 

No clear BAO feature 



40 60 80 100 120 140 160 180 200
r (Mpc=h)

0

50

100

150

200

250

300

r2
»(
r)
(M
p
c=
h
)2

↵ = 1.07

�↵ = 0.14

Beyond RSD …
Overcoming cosmic variance issues with eFAM

Elena Sarpa   Northern Skies Cosmic Flows workshop ,  18-9-‘18!18

8 E. Sarpa et al.

40 60 80 100 120 140 160 180 200
r (Mpc=h)

¡300

¡200

¡100

0

100

200

300
r2
»(
r)
(M
p
c=
h
)2

↵ = 1.19

�↵ = 0.07

40 60 80 100 120 140 160 180 200
r (Mpc=h)

¡150

¡100

¡50

0

50

100

r2
»(
r)
(M
p
c=
h
)2

↵ = 1.06

�↵ = 0.06

0:8 0:9 1:0 1:1 1:2 1:3 1:4
®

0

2

4

6

8

10

12

14

16

Â
2
(®
)
¡
Â
2 m
in

�2

min

= 19.0

40 60 80 100 120 140 160 180 200
r (Mpc=h)

¡50

0

50

100

150

200

250

r2
»(
r)
(M
p
c=
h
)2

↵ = 1.19

�↵ = 0.11

40 60 80 100 120 140 160 180 200
r (Mpc=h)

¡40
¡20
0

20

40

60

80

100

120

r2
»(
r)
(M
p
c=
h
)2

↵ = 1.04

�↵ = 0.08

0:8 0:9 1:0 1:1 1:2 1:3 1:4
®

0

1

2

3

4

5

6

7

Â
2
(®
)
¡
Â
2 m
in

�2

min

= 18.6

Figure 5. Fit results from the fiducial model for two type-I anomalous samples. Left column: Monopole of the two-point correlation
function before reconstruction; the acoustic peak is shifted towards small scales. Middle column: Correlation function after reconstruction;
the peak location is now compatible the expected value within one standard deviation �↵ . Right column: ��2 (↵) = �2 (↵) � �2

min

before
reconstruction (blue-dashed line) and after reconstruction (red line); the shift of the best-fit ↵ towards the expected value ↵ = 1 reflects
the the shift of the peak in the correlation function.

plitudes of peculiar velocities. Accordingly, smaller peculiar
velocities allow a reconstruction pushed at earlier time, from
z ⇠ 7 in real-space to z ⇠ 40 in redshift-space using eFAM

10

.
As second test, we compared the monopole of the two-

point correlation function computed from the haloes with
known velocities, with the one obtained using the output
of the reconstruction; see top panel of Figure 8. At small
separation the strong two-point correlation between the ve-
locities of particles increases the amplitude of the correlation
function in redshift-space, ⇠ (s). This e↵ect is artificially mag-
nified when eFAM velocities are considered. However, this
e↵ect decreases with increasing relative separation when the
velocities of the pairs become less correlated, asymptotically
tending to zero at large scales; see bottom panel of Figure 8.
We therefore expect to obtain unbiased correlation functions
at the BAO scale, which supports the robustness of our pro-
cedure.

4.5 Monopole, quadrupole, and anisotropic
correlation function in redshift-space

The attractive feature of the eFAM technique is to recover
the peculiar velocities of objects at their observed redshift,
allowing for a non-parametric modeling of the RSD. This
is illustrated in Figure 9, which shows the density plots
of the rescaled anisotropic two-point correlation function
s2

¯⇠ (s k, s?) as function of the longitudinal (s k) and trans-
verse (s?) components of the separation vector s, averaged
over the 512 mocks. If the reconstruction is successful, s
represents the cosmological redshift with no peculiar veloc-
ity component in it. Before reconstruction (left panel), the

isotropy of the correlation function is broken by the RSD,
which compresses the BAO ring at ⇠ 110h�1Mpc along the
line-of-sight and split it into two arcs. This deformation is
almost completely removed after correcting the density field
in redshift-space by subtracting the longitudinal displace-
ment due to the peculiar velocities, as estimated by eFAM
at the same redshift of objects (middle panel). The BAO
ring is further sharpened by reconstructing the density field
at higher redshift (right panel).

The power of the eFAM technique to improve the mea-
surements of the acoustic scale enhancing the BAO signature
becomes glaring looking at the monopole of the correlation
function, ˜⇠ (s) after the non-linear evolution is maximally re-
versed; see Figure 10 top panel. This can be achieved with
eFAM at order M = 10, reaching z = 36.6 (red line) when the
monopole substantially matches the linear model (dashed
line). If only the monopole is considered, the eFAM success
to correct for RSD at z = 0 results limited (green line), only
slightly improving the measurement of the acoustic scale,
moderately sharpening and shifting the BAO peak towards
the expected value. The results of the model fitting listed
in table 3 show that this reconstruction does not bias the
measurements of the acoustic scale and reduces the value of
the non-linear broadening ⌃

NL

by 66 percent. The e�ciency
of reconstruction in the redshift-space, smaller than in real-
space case, could be the result of the lack of precision in the
assignment of the initial comoving redshift coordinates, as
described in subsection 3.1

Although not fully recovering the clustering signal at
the BAO scale at z = 0, eFAM e�ciently restores statisti-
cal isotropy already at this redshift, as shown by the van-
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Figure 5. Fit results from the fiducial model for two type-I anomalous samples. Left column: Monopole of the two-point correlation
function before reconstruction; the acoustic peak is shifted towards small scales. Middle column: Correlation function after reconstruction;
the peak location is now compatible the expected value within one standard deviation �↵ . Right column: ��2 (↵) = �2 (↵) � �2

min

before
reconstruction (blue-dashed line) and after reconstruction (red line); the shift of the best-fit ↵ towards the expected value ↵ = 1 reflects
the the shift of the peak in the correlation function.

plitudes of peculiar velocities. Accordingly, smaller peculiar
velocities allow a reconstruction pushed at earlier time, from
z ⇠ 7 in real-space to z ⇠ 40 in redshift-space using eFAM

10

.
As second test, we compared the monopole of the two-

point correlation function computed from the haloes with
known velocities, with the one obtained using the output
of the reconstruction; see top panel of Figure 8. At small
separation the strong two-point correlation between the ve-
locities of particles increases the amplitude of the correlation
function in redshift-space, ⇠ (s). This e↵ect is artificially mag-
nified when eFAM velocities are considered. However, this
e↵ect decreases with increasing relative separation when the
velocities of the pairs become less correlated, asymptotically
tending to zero at large scales; see bottom panel of Figure 8.
We therefore expect to obtain unbiased correlation functions
at the BAO scale, which supports the robustness of our pro-
cedure.

4.5 Monopole, quadrupole, and anisotropic
correlation function in redshift-space

The attractive feature of the eFAM technique is to recover
the peculiar velocities of objects at their observed redshift,
allowing for a non-parametric modeling of the RSD. This
is illustrated in Figure 9, which shows the density plots
of the rescaled anisotropic two-point correlation function
s2

¯⇠ (s k, s?) as function of the longitudinal (s k) and trans-
verse (s?) components of the separation vector s, averaged
over the 512 mocks. If the reconstruction is successful, s
represents the cosmological redshift with no peculiar veloc-
ity component in it. Before reconstruction (left panel), the

isotropy of the correlation function is broken by the RSD,
which compresses the BAO ring at ⇠ 110h�1Mpc along the
line-of-sight and split it into two arcs. This deformation is
almost completely removed after correcting the density field
in redshift-space by subtracting the longitudinal displace-
ment due to the peculiar velocities, as estimated by eFAM
at the same redshift of objects (middle panel). The BAO
ring is further sharpened by reconstructing the density field
at higher redshift (right panel).

The power of the eFAM technique to improve the mea-
surements of the acoustic scale enhancing the BAO signature
becomes glaring looking at the monopole of the correlation
function, ˜⇠ (s) after the non-linear evolution is maximally re-
versed; see Figure 10 top panel. This can be achieved with
eFAM at order M = 10, reaching z = 36.6 (red line) when the
monopole substantially matches the linear model (dashed
line). If only the monopole is considered, the eFAM success
to correct for RSD at z = 0 results limited (green line), only
slightly improving the measurement of the acoustic scale,
moderately sharpening and shifting the BAO peak towards
the expected value. The results of the model fitting listed
in table 3 show that this reconstruction does not bias the
measurements of the acoustic scale and reduces the value of
the non-linear broadening ⌃

NL

by 66 percent. The e�ciency
of reconstruction in the redshift-space, smaller than in real-
space case, could be the result of the lack of precision in the
assignment of the initial comoving redshift coordinates, as
described in subsection 3.1

Although not fully recovering the clustering signal at
the BAO scale at z = 0, eFAM e�ciently restores statisti-
cal isotropy already at this redshift, as shown by the van-
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Figure 6. Fit results from the fiducial model for the type-II anomalous samples. Left column: Monopole of the two-point correlation
function before reconstruction; the acoustic peak is not visible. Middle column: Correlation function after reconstruction; the peak is
now clearly visible and the fit returns an unbiased value of ↵. Right column: ��2 (↵) = �2 (↵) � �2

min

before reconstruction (blue-dashed
line) and after reconstruction (red line); the minimum of �2 (↵) curve that pre-reconstruction was either unclear or not unique becomes
well-defined post-reconstruction.

Table 3. Fit results to average mock correlation functions in
redshift-space using eFAM

10

.

Type ↵ ⌃
NL

(h�1

Mpc)

pre-recon, z = 0 1.007 ± 0.002 11.8 ± 0.3
post-recon, z = 0 1.005 ± 0.002 11.0 ± 0.3
post-recon, z = 36.6 0.997 ± 0.001 4.0 ± 0.5

ishing quadrupole of the correlation function after recon-
struction; see Figure 10, bottom panel. To ease the com-
parison at di↵erent redshifts pre- and post-reconstruction,
the rescaled quadrupole of the two-point correlation func-

tion is shown, ˜⇠
2

(s) = 5[BD(z)]�2

R
1

0

L
2

(µ)⇠ (s, µ)dµ, with µ
the cosine of the angle between the separation vector and
the line-of-sight and L

2

the Legendre polynomial of order
2. Before reconstruction, the RSD brake the isotropy of the
correlation function returning a non-zero value for ˜⇠

2

. The

deviation from the isotropy is almost completely restored
after correcting for the peculiar velocities at the observed
redshift z = 0 and is further improved at small scales when
the density field is reconstructed at higher redshift, z = 36.6.

As done for the real-space analysis, the impact of the
reconstruction on the dilation parameter and its error is es-
timated by a point-wise comparison between the fitted val-
ues of ↵ pre- and post-reconstruction from the 512 mocks;
see Figure 11. The distribution of ↵

rec

is more centred on
the actual value, though its dispersions is only mildly im-
proved. The improvement of the precision of ↵ is less sig-
nificant in redshift-space, here the eFAM algorithm yielding
�↵,rec

< �↵,unrec

for the 61 percent of mocks.

5 CONCLUSIONS

An extended version of the Fast Action Minimization
method (Nusser & Branchini 2000), dubbed eFAM, is pre-
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Figure 6. Fit results from the fiducial model for the type-II anomalous samples. Left column: Monopole of the two-point correlation
function before reconstruction; the acoustic peak is not visible. Middle column: Correlation function after reconstruction; the peak is
now clearly visible and the fit returns an unbiased value of ↵. Right column: ��2 (↵) = �2 (↵) � �2

min

before reconstruction (blue-dashed
line) and after reconstruction (red line); the minimum of �2 (↵) curve that pre-reconstruction was either unclear or not unique becomes
well-defined post-reconstruction.

Table 3. Fit results to average mock correlation functions in
redshift-space using eFAM

10

.

Type ↵ ⌃
NL

(h�1

Mpc)

pre-recon, z = 0 1.007 ± 0.002 11.8 ± 0.3
post-recon, z = 0 1.005 ± 0.002 11.0 ± 0.3
post-recon, z = 36.6 0.997 ± 0.001 4.0 ± 0.5

ishing quadrupole of the correlation function after recon-
struction; see Figure 10, bottom panel. To ease the com-
parison at di↵erent redshifts pre- and post-reconstruction,
the rescaled quadrupole of the two-point correlation func-

tion is shown, ˜⇠
2

(s) = 5[BD(z)]�2

R
1

0

L
2

(µ)⇠ (s, µ)dµ, with µ
the cosine of the angle between the separation vector and
the line-of-sight and L

2

the Legendre polynomial of order
2. Before reconstruction, the RSD brake the isotropy of the
correlation function returning a non-zero value for ˜⇠

2

. The

deviation from the isotropy is almost completely restored
after correcting for the peculiar velocities at the observed
redshift z = 0 and is further improved at small scales when
the density field is reconstructed at higher redshift, z = 36.6.

As done for the real-space analysis, the impact of the
reconstruction on the dilation parameter and its error is es-
timated by a point-wise comparison between the fitted val-
ues of ↵ pre- and post-reconstruction from the 512 mocks;
see Figure 11. The distribution of ↵

rec

is more centred on
the actual value, though its dispersions is only mildly im-
proved. The improvement of the precision of ↵ is less sig-
nificant in redshift-space, here the eFAM algorithm yielding
�↵,rec

< �↵,unrec

for the 61 percent of mocks.

5 CONCLUSIONS

An extended version of the Fast Action Minimization
method (Nusser & Branchini 2000), dubbed eFAM, is pre-

MNRAS 000, 1–13 (2018)

Recovered BAO feature 

40 60 80 100 120 140 160 180 200
r (Mpc=h)

¡50

0

50

100

150

200

250

r2
»(
r)
(M
p
c=
h
)2

↵ = 1.19

�↵ = 0.11

(Sarpa et al. 2018, in prep.)



�20

Thanks for your attention

Elena Sarpa   EUCLID meeting,  14-6-‘18

❖ eFAM efficiently recovers the velocity field 

❖ eFAM efficiently restores the isotropy correcting for linear RSD already at the 

observed redshift 

❖ eFAM efficiently sharpened the BAO features almost recovering the linear 

correlation function at high redshift

❖ eFAM improved the signal-to-noise ratio also for anomalous mocks

Summary

Future prospectives
❖ Apply eFAM to CosmicFlow-3 data comparing the reconstructed velocity field 

with the measured one

❖ Apply eFAM to mocks w/ pNG to improve its measurement disentangling it from 

RSD effects
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Figure 8. Accuracy test of eFAM
10

for the clustering statistics
in redshift-space. Top: Rescaled monopole of the two-point corre-
lation function computed from the haloes with known velocities
(blu lines, circles) and with eFAM peculiar velocities (red line,
triangles). Bottom: Residuals of the correlation function. Assign-
ing eFAM velocities to build the halo catalogues in redshift-space
results in an overestimation of the amplitudes of the correlation
function, which decreases with increasing separation.

ing redshift coordinates of objects using the reconstructed
peculiar velocities, eFAM

10

already restores the isotropy of
the two-dimensional correlation function at the observed
redshift, here z = 0. Performing the non-linear reconstruc-
tion at the highest redshift possible before shell-crossing,
here z = 33.6, the acoustic ring is e�ciently returned. The
azimuthally-averaged two-point correlation function ⇠ (s) is
correspondingly well-sharpened, with a 66 percent reduction
of the ⌃

NL

broadening parameter from 11.8 ± 0.3h�1Mpc to
4.0± 0.5h�1Mpc. Although not reproducing the internal dy-
namics in virialised haloes, the fully non-linear eFAM tech-
nique achieves a very good accuracy in reconstructing the
dynamics down to ⇠ 10h�1Mpc, as also shown by point-wise
comparison of real (simulated) and reconstructed velocities.
This opens the possibility of a non-parametric modelling of
RSD, which is left for a future study.
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