Correcting RSD at large scales: improving the BAO peak measurement by reconstruction, the Fast Action Minimization Method

Elena Sarpa

September, 182018

In collaboration with:
Carlo Schimd (LAM), Sabino Matarrese (Univ. of Padova), Enzo Branchini (Univ. Roma Tre)

Large scales density field

Cosmological principle: The Universe on large scales is homogenous and isotropic

Redshift space distortions

Redshift space distortions

Real-space

(Padmanabhan et al. 2012)

Redshift-space

Reconstruction of the velocity and density fields to remove RSD

The reconstruction technique

The Least Action Principle (Peebles 1989)

Idea: Reconstruction of particles trajectories backward in time

 by minimisation of the action- "mixed boundary condition problem":
observed positions/redshifts \& initial velocities
- Point-like particles, with equal mass,
- interacting only by gravity in a FLRW Universe + Newtonian approximation

Key: fully non-linear method
Action (Peebles 1989)
$S=\int_{0}^{t_{0}} d t \sum_{i=0}^{N}\left\{\frac{1}{2} m_{i} a^{2} \dot{\mathbf{x}}_{i}^{2}-m_{i}\left[-\frac{G}{a} \frac{1}{2} \sum_{j=0, j \neq i}^{N} \frac{m_{j}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|}-\frac{2}{3} G \pi \rho_{m} a^{2} \mathbf{x}_{i}^{2}\right]\right\}$
Orbits parametrisation: $\quad \mathbf{x}_{i}(D)=\mathbf{x}_{i, \mathrm{obs}}+\sum_{n=0}^{M} \mathbf{C}_{i, n} q_{n}(D) . \quad \quad$ Minimisation: $\quad \mathbf{C}_{i, n} \quad: \quad \frac{\partial S}{\partial \mathbf{C}_{i, n}}=0$

Recovering the bulk flow

Recovering the bulk flow

Input

$r_{\text {int }}+100 \mathrm{Mpc} / \mathrm{h}$

Inclusion of
External density field rext
$r_{\text {int }}+200 \mathrm{Mpc} / \mathrm{h}$

Recovering the bulk flow

Input

Inclusion of External density field rext
$r_{\text {int }}+200 \mathrm{Mpc} / \mathrm{h}$

Vefam $^{\text {VS. }} \mathrm{V}_{\text {Nbody }}$

	Slope	Bulk flow (km/s)	RMS of residuals (km/s)
$\mathbf{V x}$	$0.845+/-0.006$	$-21+/-1$	78
$\mathbf{V y}$	$0.920+/-0.005$	$8+/-2$	81
$\mathbf{V z}$	$0.981+/-0.006$	$63+/-1$	91

eFAM accurately recovers the velocity field!

With no need of any smoothing

BAO reconstruction

Probing Non-linear dynamics

Simulation: DEUS-FUR

$$
z=0
$$

$$
M_{\text {nalo }}>10^{12} \mathrm{M}_{\text {sun }} \sim 100 \mathrm{DM} \text { part } \quad \mathrm{L}_{\text {box }}=21 \mathrm{Gpc}^{\mathrm{h}}
$$

Cosmology: LCDM, WMAP7

Mocks: sub-cubes*

Cutting the Parent simulation into 512 Sub-cubes of Lsub $=2 \mathbf{G p c}^{\mathbf{- 1}}$ ($\mathbf{N}_{\text {halos }} \sim 23 \mathrm{k}$)
Separated by a $0.5 \mathrm{Gpc} \mathrm{h}^{-1}$ (Norberg et al. 2008)

* Non-linear numerical action method instead of Lagrangian perturbative à la Padmanabhan

* Pure N -body sim. \# COLA Mocks generated using 2LPT

Recovering the monopole

Pre-rec

- Broadening: Non-linear RSD
- Squashing: linear RSD
- No clear BAO ring

Post-rec, z=0

- Reduced broadening
- ~ No squashing
- Dumped BAO feature

Post-rec, z=33.6

\bigcirc ~ No broadening

- No Squashing
- Clear BAO ring

Recovering the monopole

Angle averaged

- Pre reconstruction
- Post-reconstruction z=0
- Post-reconstruction z=33.6
--. Linear theory

Recovering isotropy: the quadrupole

Beyond RSD

Overcoming cosmic variance issues with eFAM

No clear BAO feature

Beyond RSD

Overcoming cosmic variance issues with eFAM

Peak shifted towards the correct value

Beyond RSD

Overcoming cosmic variance issues with eFAM

(Sarpa et al. 2018, in prep.)

Summary

* eFAM efficiently recovers the velocity field
* eFAM efficiently restores the isotropy correcting for linear RSD already at the observed redshift
* eFAM efficiently sharpened the BAO features almost recovering the linear correlation function at high redshift
* eFAM improved the signal-to-noise ratio also for anomalous mocks

Future prospectives

* Apply eFAM to CosmicFlow-3 data comparing the reconstructed velocity field with the measured one
* Apply eFAM to mocks w/ pNG to improve its measurement disentangling it from RSD effects

Thanks for your attention

Backup slides

Coherent velocities

Comparison with ZA-based reconstruction

