Large-IFU for CAHA & LUCA: Local Universe from Calar Alto

IAA (CSIC) Francisco Prada (IC) Enrique Pérez Jiménez (SC) Rosa González Delgado (SC) Justo Sánchez Rubén García Benito

Niche for a Large-IFU at 3.5m CAHA

Local Universe: sphere of 15 Mpc center at the local group Local Volumen distribution of galaxies (~10 Mpc) + Virgo cluster

scale < 80 pc/arcsec

Constrains to the sub grid physics for simulations of galaxy formation

Local Universe: Niche for a Large-IFU at 3.5m CAHA

IAU: Local Universe: sphere of 15 Mpc center at the local group Local Volume distribution of galaxies (d< 11 Mpc) + Virgo cluster

Balaxies in Virgo

Galaxies of Local Universe 1 arcmin < D < 30 arcmin

- M86 (E3): 10 arcmin
- M84 (E1): 6 arcmin
- NGC4435 (S0): 3 arcmin
- NGC4438 (Sa): 9 arcmin
- M100 (Sbc): 7 arcmin

LUCA: Local Universe from Calar Alto

Selection from the LV sample: complete up to $M_B < -14$

BURAL BUTTOMOMENCAL IN

VEHICLE REPORTED IN THE OWNER

Abundance of field galaxies

Anatoly Klypin,^{1,4} Igor Karachentsev,² Dmitry Makarov² and Oiga Nascnova² ¹New Entire Start Distorts, Let Cruces, Nether 18805, USA ²Devid Autophysical Obviously, Nether Artists 18805, Basis

Accepted 2015 August 31. Received 2015 August 31; in original form 2014 June 30

ABSTRACT

We present new measurements of the abundance of galaxies with a given sircular velocity is the Local Volume: a region centred-on the MBBy Way Galaxy and extending to distance ~10 Mpc. The sample of ~730 model yeard galaxies provides a unique opportunity to study the doundance and properties of galaxies shown to alwork mapping the MB and Mark 100 Mpc. We find that the standard A cold dark matter (ACBM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities $V\gtrsim 10^{12}\,{\rm Myc}$. We find that the standard A cold dark matter (ACBM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities $V\gtrsim 10^{12}\,{\rm Myc}$. The varm dark matter (MCDM) model cance explained that relacions $V \approx 10^{12}\,{\rm Myc}$. The varm dark matter (MCDM) model cance explained the data either, specifies of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic dope $dW(\log V \propto V^{\alpha}, \alpha \sim -1$ of the velocity function, which is inconsistent with the standard ACDM model that prelime the slope at -3. Through remainscent to the known vectorbandance of samiline problem, the overabundance of field galaxies is a much more failed problem. For the standard ACDM model to survive, in the 10 Npc radius of the MRiy Way there should be 100 not veri denoted galaxies with with matter should be 100 not veri denoted galaxies in the 100 Npc radius law be endinover sensitives in the sendard be 100 not veri denoted galaxies in the surface brightness and no detectable H ; gas. St far none of this ype of galaxies law been discovered.

Key vords: galaxies haloes - cosmology: theory - dak matter.

LUCA: Local Universe from Calar Alto

sample selection

- M_B <= -16
- a_{26_B} > 1 arcmin

- complete sample
- log Mass > 9 Msun
- mean Distance = 7 Mpc
- spatial scale: 34 pc/arcsec
- dwE + Spirals

LUCA: Local Universe from Calar Alto

Sample selection • $S_B \ll 25 \text{ mag/arcsec}^2$ • $a_{26 B} > 1 \text{ arcmin}$

- complete sample
- dwE, Spirals and
- Irr with a26_B < 5 arcmin

Examples of galaxies and number of pointings

NGC1569: 4 loci (1.0 superposition) of (3×24)×(3×24) 2" fibers

Local groups (d < 11 Mpc) M81,Maffei,NGC2403, Canesl, M101, NGC672, NGC5194, NGC3115

M81

M81 group: HolmII, IC2574, M82, NGC2976, NGC3077, NGC3738, NGC4236

Selection from VCC (Binggeli, Sandage & Tammann 1985)

VCC: 2095 galaxies complete to M_B < -13

Next Generation of Virgo Cluster survey SDSS-bands (u, g, r, i, z)

Ferrarese et al. 2012, ApJS, 200

Selection criteria

Selection criteria

M_g < -16 & a > 0.8 arcmin Ngal = 334

M_r < -17 & a > 0.8 arcmin Ngal = 283

LUCA

- * Local Volume Sample (d < 11 Mpc) + Virgo Cluster
- * Ngal ~ 300-500 galx
- * 3600 to 7000 A
- * R ~2000
- * FoV ~3x3 arcmin (continuous)
- * fiber size ~2.5 arcsec
- * mean distance 7 Mpc (LV): 85 pc
- * Virgo: 190 pc

9 cloned spectrographs FoV = 3x3 arcmin 600 fibers of 2.5 arcsec

Examples of galaxies and numbers of pointings

VI33 and M31 can be done with small telescopes, a large FoV and with fiber of size 8 arcsec (20-40 pc) (more than 400 pointings with 2.5x2.5 arcmin FoV)

LUCA

* Local group (M33, M31) can be done with Schmidt telescope
* 1 CCD + 1 spectrograph
* resolution : 38 pc (fiber size = 8.5 arcsec)

1 spectrograph FoV = 3.5x3.5 arcmin 600 fibers of 8.5 arcsec

The closest competitor beyond 2020: SDSS-V

Local Volume mapper:

* MW, LMC, SMC

* M31, M33 and other galaxies out to 5Mpc:

- sparse IFS sampling
- statistical samples of HII regions at 20 pc resolution in M31 and ~50pc in other galaxies

* At each hemisphere: ~2000 fibers feed 3 spectrographs at R~4000, 3600-10000Å

Niche for a Large-IFS at 3.5m CAHA

Niche for a Large-IFS at 3.5m CAHA

Develop:

- Additional scientific cases with the survey data
- Additional scientific cases with additional data

Kathryn Kreckel (MPIA)

Optical IFU maps of nearby galaxies enable us to

- resolve HII regions
- reveal & resolve the diffuse ionized gas
- map dust within galaxies

Balmer line reddening as a dust tracer

Kreckel et al. 2013

Balmer line reddening as a dust tracer

Tomicic+2017

M31 100pc scales

Dust **well modeled** by a foreground screen at 100pc spatial scales M33 is ideal: -high (32 pc) spatial scales -low metallicity environment -existing extensive multi-wavelength coverage -high (50 pc) resolution CO maps (Rosolowsky et al. 2007)

Enables studies of **HII regions** and **dust** at the spatial scales relevant for understanding the **physics** of star formation

☆

Identical simulations (IC / DM particle mass res \rightarrow 5 x 10⁴ M_o) with different physics implemented (adiabatic, cooling, star formation, SN feedback, RT, stellar winds, MHD ...)