

International Centre for Radio Astronomy Research

The SAMI Galaxy Survey

Luca Cortese on behalf of the SAMI Team

THE UNIVERSITY OF WESTERN AUSTRALIA

The phenomenology of galaxies at z~0

Large area imaging and (fiber) spectroscopic surveys key for progress in the last decade

ICRAR

e.g., Kauffmann+2003; Tremonti et al. 2004; Blanton & Moustakas 2009

e.g., Schiminovich+ 2007; Renzini & Peng 2015

Getting closer to the astrophysics of galaxies

The wonders of integral field spectroscopy

- I3x6I fibre IFUs
- Fused fiber bundles; high fill factor (~75%)
- 15" bundle diameter (each fiber is 1.6")
- Positioned on I degree diameter field-of-view
- Feeds AAT AAOmega spectrograph

The Sydney-AAO Multi-object IFS (SAMI)

- Plates drilled by the AAT
- 12 objects, 1 calibration star, 3 guide bundles
- One plate can be used for up to 2 fields
- SAMI Galaxy Survey 7 dither pattern (3.5 h)

- Plate plug/unplug done manually
- Procedure takes between 30 min and Ihours depending on plugger ability and `crowdness' of the field

5

The SAMI Galaxy Survey

IFU survey of ~3000 nearby galaxies with two separate selections

Arm	λ_{range} [Å]	λ_{central} [Å]	FWHM [Å]	$\Delta \sigma \; [\mathrm{km}\mathrm{s}^{-1}]$
Blue Red	3750-5750 6300-7400	4800 6850	$2.66^{+0.076}_{-0.070}\\1.59^{+0.049}_{-0.040}$	70.4 29.6

Multiple volume-stellar mass limited samples

Cluster survey ~600 galaxies

CLUSTER NAME	RA (DEG)	DEC (DEG)	z	VIRIAL MASS ($10^{14} M_{sun}$)
EDCC0442	6.38068	-33.04657	0.0498	3.6±0.7
Abell0085	10.460211	-9.303184	0.0549	17.0±1.3
Abell0119	14.06715	-1.25537	0.0442	9.5±1.1
Abell0168	18.815777	0.213486	0.0449	2.9±0.4
Abell2399	329.372605	-7.795692	0.0580	6.1±0.8
Abell3880	336.97705	-30.575371	0.0578	4.6±1.1
APMCC0917	355.39788	-29.236351	0.0509	2.1±0.6
Abell4038	356.93781	-28.140661	0.0293	2.9±0.5

$\begin{array}{c} 1.4 \\ 1.2 \\ 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.6$

Cover the entire range of halo masses Nearly complete above $10^{10}M_{sun}$

The SAMI Galaxy Survey DR2

Cubes and value-added products publicly available for ~1600 galaxies

Scott et al. 2018

Why SAMI?

The 3 major IFS surveys in a nutshell

Specification	MaNGA	SAMI	CALIFA
Sample Size	10,000	3,400	600
Selection	$M > 10^9 M.$	$M > 10^{8.2} M.$	$45" < D_{25} < 80"$
Radial coverage	$1.5r_e$ (2/3), $2.5r_e$ (1/3)	$1-2r_e$	$>2.5r_e$
S/N at $1r_e$	15-30	10-30	~ 30
Wavelength range(Å)	3600-10300	3700-7350	3700-7500
Instrumental resolution	50-80 km/s	75/28 km/s	85/150 km/s
Input Spaxel Size	2.0"	1.6'"	2.7"
Sanchez 2015			

Highly complementary to other IFS surveys

SAMI unique in terms of:

higher gas velocity resolution

wider stellar mass range

wider environmental coverage (cluster regime)

homogenous quality of ancillary data [FUV to FIR] and legacy potential

Gas physics

Ionisation and gas-phase metallicities

O/H maps

Ionisation parameter maps (q)

- Resolved distributions of O/H and q
- Radial gradients in O/H but not in q
- Variations in q are important for O/H estimates
- Methods no allowing for varying q may introduce bias in metallicity estimates
- Getting closer to more reliable O/H?

Poetrodjojo et al. 2018

Ionised gas outflows in nearby galaxies

- Ability to isolate kinematic and ionisation signatures of outflows
- Disturbance in velocity field (i.e., multiple velocity components)
- Ionisation/velocity dispersion extraplanar gradients
- Hint that SFR surface density key parameter driving likelihood of ionised gas outflow
- Full survey will provide best local sample

Ho I-T. et al. 2014, 2016

Kinematic scaling relations

The power of resolved kinematics for both gas and stars

Rotation and dispersion within one effective radius

Unified dynamical scaling relation for galaxies of all types Scatter (0.1dex) similar to pruned TF and FJ relations

Gas vs. Stars

Morphology

13

Ability to trace both gas and stars simultaneously provides great sanity check

Combining rotation and dispersion balance effect of asymmetric drift

Angular momentum and optical morphology

The scatter of M*-j* relation correlates with stellar distribution Galaxies sit on a `plane': "morphology" set by mass and j.

Note: this is just within $Ir_e!$

van de Sande et al. 2018

Intrinsic shape of galaxies linked to stellar ages

Constraining cosmological simulations of galaxy formation

SAMI vs. EAGLE

SAMI vs. Horizon AGN

van de Sande et al. in prep.

Cosmological simulations not able to produce thin/fast-rotating disks

Role of environment

How are galaxies really transformed?

First unbiased IFS census of cluster galaxies Representative sample of perturbed/jelly-fish systems Rapid truncation features (Hδ-strong) only for infalling population.

Any structural changes take place after quenching

LC et al. in prep

The SAMI Galaxy Survey

Extremely rich dataset Scratched only the tip of the iceberg Full dataset key for statistical studies

HECTOR

The next-generation Australian IFS instrument

HECTOR-I: 21 hexabundles across a 2 degree field 13 SAMI-like+ 8 bigger (up to 30") bundles

New spectrograph: Continuous coverage from 3726 to 7761A R=1.3A Major improvement in stellar kinematic studies

Commissioning to start in mid 2019

Credit: Julia Bryant

The HECTOR Galaxy Survey

The next-generation Australian IFS survey

Primary scientific drivers: Extend stellar kinematic studies below 10¹⁰ M_{sun} Link galaxy evolution to LSS (role of filaments in build-up of AM) Maximise synergy with blind ASKAP HI survey

Targeted regions: Primarily 4MOST WAVES-wide/-deep footprint

Detailed target selection under way: aiming for 10-20k galaxy survey [starting in ~2020]

Highly complementary to SAMI/HECTOR and MANGA: smaller samples but better spatial resolution

Going for higher spectral resolution would increase discovery potential: at least 20-30 km/s in $H\alpha$

Main competitor SDSSV: Local Volume Mapper program MW, LMC, SMC, M31, M33 plus galaxies with D<5 Mpc (R~4000)

Focus on the 5<D<20 Mpc (including Virgo!) - Huge legacy value (in particular if same spec. resolution)

