Calar Alto Spectroscopic Explorer (CASE) Large Spectroscopic Facility at CAHA

Lol for new instruments at Calar Alto 3.5m (11th June 2018) IAA (CSIC) + LAM-CNRS (France) + CfAI (Durham Univ.) + AAO (Australia)

Lol is approved and feasibility study funded with 100k euro

In the room: Gilles Bergond, Johan Comparat, Helene Courtois, Graham Murray, Enrique Pérez, Francisco Prada, Justo Sánchez

Large-IFU Spectroscopic Facility at CAHA

Schmidt 80

Niche for a Large-IFS at 3.5m CAHA

IFU characteristics

-PPaK@CAHA: 1.2 arcmin x 1 arcmin,
-R~500 : $3700-7000$ A

- 2.6 arcsec/spaxel
-MUSE@VLT: $1.2 \operatorname{arcmin} \times 1$ arcmin,
- R ~2000: $4650-9300 \mathrm{~A}$
- 0.2 arcsec/spaxel
- MaNGA: diameter ~ 12 to 32 arcsec
- R ~2000: 3600-10000 A
- 2 arcsec/spaxel
- LIFU(WEAVE)@WHT: $1.5 \times 1.3 \mathrm{arcmin}$
- LR 2500: 3360 - 9840 A
- 2.6 arcsec/spaxel

Kathryn Kreckel (MPIA)

Optical IFU maps of nearby galaxies enable us to

- resolve HII regions
- reveal \& resolve the diffuse ionized gas
- map dust within galaxies

Observed using PMAS/PPAK at Calar Alto

scale < 80 pc/arcsec
Constrains to the sub grid physics for simulations of galaxy formation

Local Group

Local Universe: Niche for a Large-IFU at 3.5m CAHA

IAU: Local Universe: sphere of 15 Mpc center at the local group
Local Volume distribution of galaxies $(d<11$ Mpc $)+$ Virgo cluster

Galaxies of Local Universe 1 arcmin < D < 30 arcmin

IFU6000 at the 3.5 m telescope

```
* Local Volume Sample (d < 11 Mpc) + Virgo Cluster
* Ngal ~ 300-500 galx
* 3600 to 7000 A
* R ~2000
* FoV ~3x3 arcmin (continuous)
* fiber size ~2.5 arcsec
* mean distance 7 Mpc (LV): 85 pc
* Virgo: 190 pc
```

9 cloned spectrographs FoV = 3×3 arcmin 600 fibers of 2.5 arcsec

IFU600 at the Schmidt

* Local group (M33, M31) can be done with Schmidt telescope
* 1 CCD + 1 spectrograph
* resolution : 30 pc (fiber size = 8 arcsec)

1 spectrograph FoV = 3.0x3.0 arcmin 600 fibers of 100 um

M33 and M31 can be done with small telescopes, a large FoV, and with fiber of size 5 arcsec (20 pc)
(more than 400 pointings with 3.0×3.0 arcmin FoV)

O.A. Javalambre $\mathrm{T} 80 \mathrm{H} \alpha$

0.55 "/pixel 8 "/pixel

image provided by Izaskun San Román et al. (CEFCA)

A few maps

LoRCA

- At redshift 1,100 with the cosmic microwave background (COBE, WMAP, PLANCK)
- And at redshift 0.1 in the local universe, we have a photometric map: 2MASS, WISE
- We are not done with the local Universe :
- LoRCA +TAIPAN will add a factor of 10 in redshift precision and a factor of 3 in volume.
- A high accuracy full sky map of the local Universe is on its way

FOMBS: Follow-up of One Million Bright Stars

- Connection between the $\mathrm{V}<12$ stars (with fundamental parameters) and the (tens of millions) V>14 observations from SDSS, LAMOST, HETDEX, WEAVE, 4MOST, DESI, ...
- 1 million stars over 21,000 square degrees in the Northern Hemisphere: 2600 visits of $30-\mathrm{min}$ (220 clear nights or the bright time during 3 years)
- Northern hemisphere counterpart to Funnel-web

PLATO-Spec

- The PLATO - Planetary Transits and Oscillations of stars - mission was selected by ESA's Science Program Committee for implementation as part of its Cosmic Vision 2015-25 Program.
- The mission will address two key themes of Cosmic Vision:
- what are the conditions for planet formation and the emergence of life ?
- how does the Solar System work?
- PLATO will monitor relatively nearby stars, searching for tiny, regular dips in brightness as their planets transit in front of them, temporarily blocking out a small fraction of the starlight.
- Coverage : half the sky
- N : about 1 million stars
- When coupled with ground-based radial velocity observations:
- PLATO's measurements will allow a planet's mass and radius to be calculated, and therefore its density, providing an indication of its composition.
- Instrumentation: CASE fiber robotic positioner at $80-\mathrm{cm}$ Schmidt telescope, and feed to a dual arm $R=25,000$ optical spectrograph. See figure at the end of this document.

Spectrograph Baseline

spectrograph configuration	
fiber core	120μ
single fiber FoV	$10^{\prime \prime}$
pitch-to-width fiber packing at slit	0.5
Number of fibers	650
15μ detector pixels per fiber	3.8
spectral resolution	2000
dispersion	$1 \AA /$ pixel
wavelength range	$3600-7000 \AA$

10 cloned spectrographs, i.e.,
Y @ 3.5m telescope 1 @ 0.8m Schmidt

Two design solutions:

1. DESI-like design by LAM \& Winlight
2. Taipan/Hector-like design by AAO

IFU-6000 @ 3.5m

Microlens Array
attached to 650 fibres

2.5" per fiber

9 cloned spectrographs each fed with 650 fibres packed in a microlens array
F.o.V $=3 \times 3$ arcmin (2.5" per fiber)

40 m cable from telescope to spectrograph room

Calar Alto Schmidt 80cm

aperture	mm	800
focal length	mm	2400
f/ratio		$1 / 3$
FOV	m	8
plate format	mm	335
scale	inch	8×10

IFU-600 @ Schmidt

Fiber Array of 650 fibres
8.5" per fiber

MOS 50 deg2!!

8 deg

Cryostats

Very minor re-design to remove the reddest arm, have 2 parallel slits and perhaps increase the red coverage up to 800nm

"2-arm" DESI spectrograph Winlight in Marseille

 is NOW building 15 of them!Collimator Mirror

DESI Three Channel Spectrograph
500 Fibers
One of 10

Red Channel 560-772nm

Remarks

Feasibility Study Phase: 15 October 2018 to 15 April 2019

Kick-off Instrumentation Meeting in Marseille @ LAM: 19-21 September 2018 (September 18-19 Workshop on Peculiar Velocity Surveys)

First IFU-600 @ Schmidt can be ready in less than 2-years!

Need HELP \& SUPPORT from YOU!

