# Peculiar Velocities with Type Ia Supernovae

Alex Kim (LBNL) Mickael Rigault (IPNL)

# Hubble Diagram: Cosmological Redshift



• Perfect standard candles lie on nominal distance-redshift relationship (e.g. Hubble law) when using the cosmological redshift

## Hubble Diagram Observed Redshift



- Don't actually observe a clean straight line
- Peculiar velocity!

#### Hubble Diagram: Observed Redshift Due to Peculiar Velocity



 Perfect standard candles with motion relative to the Hubble flow do not lie on nominal distance-redshift relationship when using the observed redshift Interpreting Observed Redshift as Cosmological Redshift: Peculiar Magnitude



- Redshift offset can be equivalently described as a peculiar magnitude offset
- Best measured with a standard candle with small magnitude dispersion

# Type Ia Supernovae Powerful Probes of Peculiar Velocity

- Low intrinsic-magnitude dispersion (after standardization):
  - Depending on data quality  $\sigma = 0.08 0.12$  mag
  - Translates to low peculiar velocity uncertainty
- Ongoing survey (ZTF) and future survey (LSST) provide large numbers of SNe Ia over a large solid angle
  - ~1000 SNe/year over 14000 square degrees

# fσ<sub>8</sub> Measured with LSST SN Peculiar Velocities



Howlett, Robotham, Lagos, Kim (2017)
Peculiar velocities of LSST-discovered SNe Ia tests GR and other gravity models

• Cross-correlation with galaxy surveys powerful

# Type Ia Supernovae Versus Galaxies as a Probe of $f\sigma_8$

- Galaxy intrinsic magnitude dispersion ~4x larger than SN la
  - SN Ia low intrinsic dispersion means less room for systematics
- 40,000 Taipan galaxies vs 5000 SNe Ia after 5 years
  - "Infinite" number of SNe to improve statistics for the patient
- SNe have 2=16/8 variance advantage relative to galaxies
- ZTF and LSST SN surveys have clean sample selection and photometric calibration

# Need for Spectroscopy

- SN Classification (time-critical when SN is bright)
- Host-galaxy redshift (not time-critical)
- Small intrinsic magnitude dispersion
  - Photometric classification and redshifts come with larger uncertainties and systematics

# What Kind of Spectroscopy?

- Active supernovae: 1/100/sq.deg. for m<20.5
  - (Not so much benefit for going deeper)
- Supernovae after three years of survey: 3/sq.deg. m<20.5

- Host-galaxy redshift measurement R~>1000
- SN classification R>75
- SN twinning (0.08 mag intrinsic dispersion)
  - Spectrophotometry

# Desired Telescope and Instrument

- Small aperture telescope < 1-2 m
  - z<0.2 SNe are bright
- Small field of view, single object targeting
  - Low surface density of targets
- Moderate resolution spectroscopy
  - SN features broad, precise redshift
- BONUS IFU spectroscopy
  - SN features to calibrate the standardizable candle, reduce intrinsic dispersion

## Non-PV Spectroscopy Science

- Magnitude-limited transient survey
- SN la properties